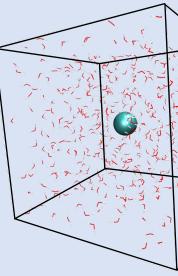


Alchemical metadynamics: Enhancing configurational sampling in alchemical free energy calculations

Wei-Tse Hsu¹, Valerio Piomponi², Pascal T. Merz¹, Giovanni Bussi², and Michael R. Shirts¹ Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80305 ² Scuola Internazionale Superior di Studi Avanzati, Trieste, Italy

Alchemical transformation is useful in free energy calculations but is limited in some cases

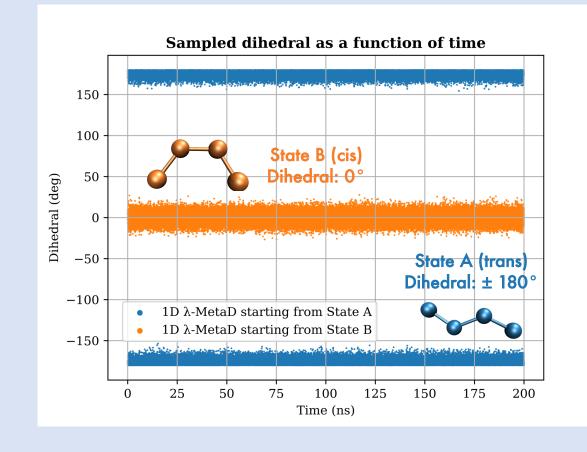
- Alchemical states (λ -states) are a series of unphysical states connecting the desired end states.
- Traditional free energy methods such as Hamiltonian replica exchange (HREX) or expanded ensemble (EXE) could fail in the following two scenarios.
 - \checkmark A: The free energy barrier is present for all *λ* states.
 - \checkmark B: The system is stuck in a basin in the λ direction.

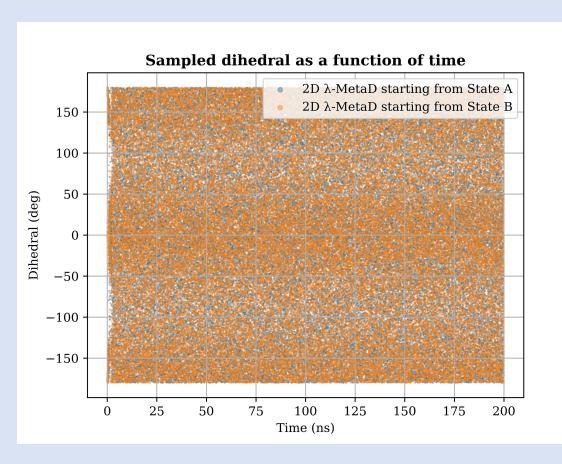

Alchemical metadynamics (available in PLUMED 2.8!) aims to address the issues mentioned above

- In λ -MetaD, we introduced the alchemical variable (λ) as an allowed collective variable in metadynamics.
- We tested our implementation by free energy calculations in 3 systems:
- ✓ **Case 1**: Solvation free energy of an argon atom
- ✓ **Case 2**: Solvation free energy of a 4-site system
- ✓ **Case 3**: Relative methylation free energy of adenosine between the isolated and the duplex form $\Delta\Delta G_{syn+anti}^{dup/ns}$

Case 1 shows that 1D λ -MetaD is essentially EXE with a different bias-updating scheme

The solvation free energies estimated by EXE and 1D λ -MetaD are statistically consistent.


Solvation free energy of argon							
EXE	$-3.275 \pm 0.016 \text{ kT}$						
1D λ-MetaD	$-3.284 \pm 0.010 \text{ kT}$						



Case 2 shows that 2D λ -MetaD outperformed traditional methods in sampling and free energy calculations

- Task: Solvation free energy calculation of a 4-site model • The two torsional metastable states are separated by a large
- free energy barrier (~50 kT).
- We performed both 1D and 2D λ -MetaD starting from each torsional state, with the latter biasing the dihedral angle.

• The lack of configurational sampling in the 1D simulations led to inaccurate free energy estimates, which was resolved in the 2D simulations.

	Starting from State A	Starting
1D λ-MetaD	$0.649 \pm 0.030 \ \text{kT}$	-0.38
2D λ-MetaD	$0.708 \pm 0.031 \ \text{kT}$	0.694

Case 3: It took 4 HREX simulations to calculate the relative methylation free energy $\Delta\Delta G_{syn+anti}^{dup/ns}$

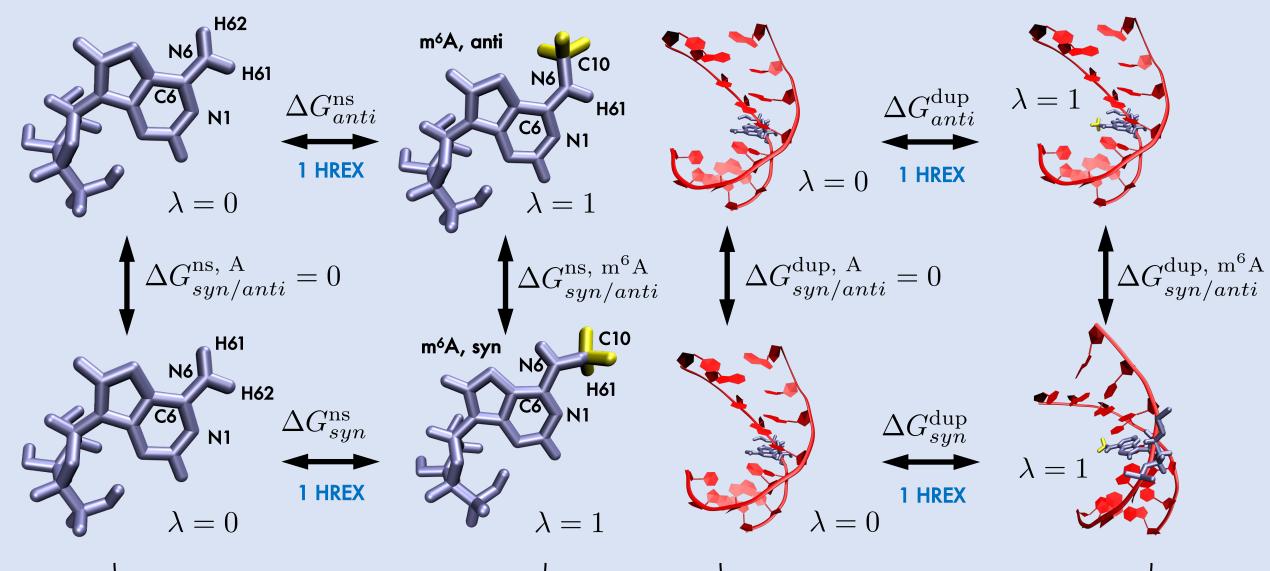
- Process: Methylation of adenosine (A) to N6-methylated adenosine (m^6A) in its isolated form and in a duplex. • $\Delta \Delta G_{syn+anti}^{dup/ns} = \Delta G_{syn+anti}^{dup} - \Delta G_{syn+anti}^{ns}$ considers both syn
- and *anti* conformations of the methyl group.
- $\Delta G_{syn+anti}^{ns}$ and $\Delta G_{syn+anti}^{dup}$ can be calculated from 4 HREX simulations. (See the thermodynamic cycle in the next column.)

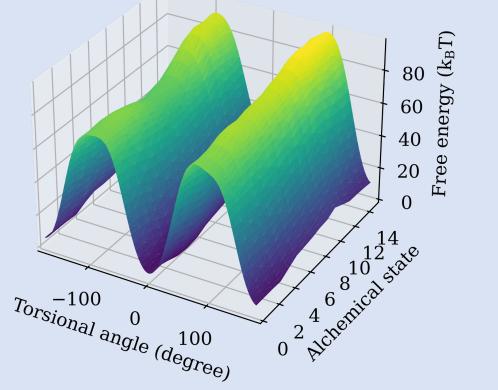
 $\Delta G_{syn+anti}^{\rm ns} = -\frac{1}{\beta} \left[\exp(-\beta \Delta G_{syn}^{\rm ns}) + \exp(-\beta \Delta G_{anti}^{\rm ns}) \right]$

- $\Delta G_{syn+anti}^{dup} = -\frac{1}{\beta} \left[\exp(-\beta \Delta G_{syn}^{dup}) + \exp(-\beta \Delta G_{anti}^{dup}) \right]$
- Additional values can be calculated:

 $\Delta \Delta G_{syn/anti}^{\rm dup} = \Delta G_{anti}^{\rm dup} - \Delta G_{syn}^{\rm dup}; \ \Delta \Delta G_{syn/anti}^{\rm ns} = \Delta G_{anti}^{\rm ns} - \Delta G_{syn}^{\rm ns}$

g from State B


- $1 \pm 0.029 \text{ kT}$ $4 \pm 0.031 \text{ kT}$

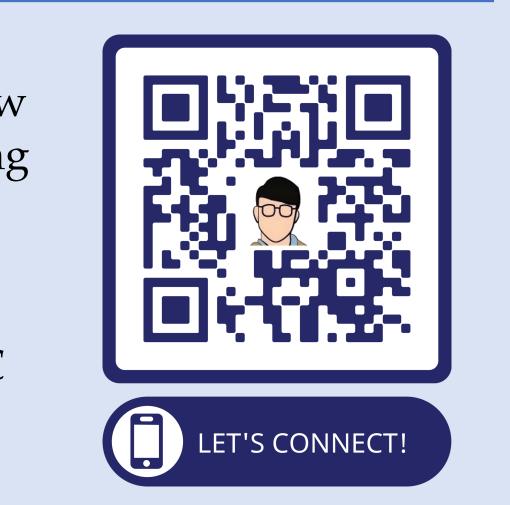

Case 3: It only took 2 λ -MetaD simulations to recover consistent results, with additional information available

- All 3 values $\Delta\Delta G_{syn+anti}^{dup/ns}$, $\Delta\Delta G_{syn/anti}^{ns}$, and $\Delta\Delta G_{syn/anti}^{dup}$ can be calculated from 2D alchemical metadynamics.
- Configurational CV : η , the average of 3 torsions identified by the atoms N1-C6-N6-C10/H61/H62.

1 2D λ -Meta

• 2D λ -MetaD additionally recovered the free energy profile along η , which was not available in HREX.

• λ -MetaD can be further empowered when combined with ML-based methods that identify the optimal CVs.


Check our JCTC paper, tutorial, and current work!

- We are developing **ensembles of** expanded ensemble (EEXE), a new method combining the the working principles of EXE and HREX!
- Scan the QR code to
- ✓ Learn more about EEXE
- ✓ Check the tutorial and the JCTC paper of λ -MetaD
- ✓ Connect and more! ☺

1 2D λ -MetaD

	C	Compa	risoı	1 bet	wee	en HF	REX	anc	lλ-Me	etaD		
								F		<u> </u>		
								/				
						~~						
				* *					÷	$\Delta\Delta G$	ns syn/an	ti
т									÷	$\Delta\Delta G$ $\Delta\Delta G$	dup syn/an	ti
									÷	ΔΔG	dup/ns syn + a	nti
-1	0.0 -	-7.5				2.5 _X (kį			2.	5 5	.0	7.5

