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Owing to the incredibly small volume occupied by the equilibrium states in the configurational
space, generating statistically independent samples of equilibrium states of many-body systems has
been regarded as a significant challenge in the field of computational molecular science. The nature
of equilibrium states necessitates the utilization of small steps in molecular simulations (e.g. molec-
ular dynamics (MD) simulations or Monte Carlo (MC) simulations), making it nearly impossible to
comprehensively sample the region of interest within a reasonable amount of time. Combining deep
learning and statistical mechanics, Boltzmann generators circumvent this sampling issue by repack-
ing the high probability regions (i.e. equilibrium states) of configuration space into a concentrated
region in latent space. In this study, we employ Boltzmann generators to different systems in an
attempt to generate statistically independent samples. As a consequence, we show that Boltzmann
generators are able to generate Boltzmann-weighted samples and accurately compute free energy
profiles along reaction coordinates in a variety of systems. The simple linear interpolation in latent
space also provides additional molecular insights into the system. In addition, comparisons between
Boltzmann generators trained on different loss functions are demonstrated.

I. INTRODUCTION

In the past decades, molecular simulations, including
molecular dynamics (MD) simulations and Monte Carlo
(MC) simulations, have played a crucial role in various
disciplines of science, including biophysics,1 pharma-
ceutical chemistry2 and material science.3 However, the
usefulness of classical molecular simulations is severely
restricted by kinetic bottlenecks as a result of systems
characterized by a rough free energy surface. For most
systems, metastable states separated by numerous en-
ergy barriers typically occupy vanishingly small vol-
ume in phase space, leading to prohibitive computa-
tional cost for generating statistically independent sam-
ples from the Boltzmann distribution.

To address this challenge of phase space sampling,
over the years, an enormous amount of research has
been devoted to the development of advanced sampling
methods. While these methods generally can mitigate
the problem, they also have their drawbacks. For ex-
ample, for sampling techniques such as metadynam-
ics,4 umbrella sampling,5 adaptive biasing force6 or their
variants,7,8 it is required to define reasonable reaction
coordinates (RC) that can capture all the slow degrees
of freedom of the system, which could be particularly
challenging for complicated condensed matter systems.
Although methods such as replica exchange molecular
dynamics (REMD),9,10 expanded ensemble11 and their
variants12,13do not require predefined reaction coordi-
nates, they do require a series of alchemical interme-
diate states to bridge the gap in probability overlap
between different metastable states. Overall, all these
methods fail to draw statistically independent samples
from Boltzmann-type distributions in one shot to com-
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pute statistical observables of the systems, such as free
energy differences.

Boltzmann generators,14 in contrast, do not require
any knowledge of reaction coordinates, nor the inter-
mediate thermodynamic states, successfully integrating
the strengths of deep learning and statistical mechanics.
In a Boltzmann generator, we train an invertible neural
network to learn the transformation of coordinates from
configuration space x to the so-called latent space z. To
ensure the adjacency between the low-energy configu-
rations from different equilibrium states in latent space,
we adopt a Gaussian distribution µz(z) as the prior dis-
tribution such that high-probability configurations are
mapped to the center of latent space and therefore can
be easily sampled.

FIG. 1. The architecture of a Boltzmann generator. The figure
was adapted from the work14 by Noé et al.



FIG. 2. The structure of affine coupling layers in RealNVP blocks.

As shown in Figure 1, in a Boltzmann generator, the
configuration variable x is transformed into the latent
variable z by a deep neural network Fxz (the so-called
inverse generator) composed of a series of invertible
transformation blocks f1, ..., fn, which are known as
real-valued non-volume-preserving (RealNVP) blocks.
Conversely, to generate samples in configuration space
that approximates the Boltzmann distribution, the net-
work Fzx (generator) maps the samples z drawn from
the Gaussian prior distribution µz(z) back to the config-
uration space.

In this study, we demonstrate the usage of Boltz-
mann generators in generating statistically indepen-
dent samples in different many-body systems, includ-
ing 2-dimensional systems such as the double-well po-
tential and the Müller-Brown (MB) potential, and a
higher-dimensional system, which is a bistable dimer
immersed in a Lennard-Jones fluid. Incorporated with
the consideration of certain reaction coordinates, these
generated samples enable accurate computations of the
free energy profile. In addition, with a trained Boltz-
mann generator, we show that realistic transition path-
ways can also be predicted by simple linear interpola-
tions in latent space.

II. THEORY

A. Real-valued non-volume-preserving transformation

As an application of flow-based generative models,
a Boltzmann generator implements real-valued non-
volume-preserving (RealNVP) transformations15 in a
deep neural network and its inverse, which transform
the probability densities incrementally from configura-
tion space to latent space or from latent space to con-
figuration space. Given the trainable parameters θ,
Boltzmann-distributed random variables x = Fzx(z; θ)
and Gaussian random variables z = Fxz(x; θ), the Jaco-
bian matrices of the transformation Fzx and its inverse
(Fxz) can be expressed as:

Jzx(z; θ) =

[
∂Fzx(z; θ)

∂z1
, ...,

∂Fzx(z; θ)

∂zn

]
(1)

Jxz(x; θ) =

[
∂Fxz(x; θ)

∂x1
, ...,

∂Fxz(x; θ)

∂xn

]
(2)

Since the absolute value of the Jacobian’s determinant
(e.g. |detJzx(z; θ)|) measures how much a volume ele-
ment at the original space is scaled by the transforma-
tion, by the change of variables theorem and the inverse
function theorem, we can write:

pX(x) = pz (Fxz(x))Rxz(x)

⇒ log pX(x) = log pz (Fxz(x)) + logRxz(x)
(3)

pZ(z) = px (Fzx(z))Rzx(z)

⇒ log pZ(z) = log px (Fzx(z)) + logRzx(z)
(4)

To ensure a low computational cost for training a
Boltzmann generator, the computation of the transfor-
mations (Fxz and Fzx) and their determinants of the Ja-
cobian matrices (Rxz and Rzx) shown in Equations 3.
and 4., must be efficient. In a RealNVP model, this is
achieved by the two affine coupling layers (fia and fib
for the block fi in Figure 1). that comprise one RealNVP
block. Specifically, in each affine coupling layer, the in-
put dimensions are split into two channels (x1 = x1:d

and x2 = xd+1:D), where the first d dimensions remain
the same in the first channel, and the remaining dimen-
sions (from d + 1 to D) undergo an affine transforma-
tion (scale-and-shift transformation) in the second chan-
nel accomplished by the scaling (S) and translating (T )
functions:

fxz(x1,x2) :{
z1 = x1

z2 = x2

⊙
exp(S(x1; θ)) + T (x1; θ)

(5)

fzx(z1, z2) :{
x1 = z1
x2 = (z2 − T (x1; θ))

⊙
exp(−S(z1; θ))

(6)

As shown in Equation 5. and 6., this design of affine
coupling layers has two advantages:
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• The transformations (fxz and fzx) and their cor-
responding inverse (fzx and xz) are both straight-
forward. In addition, the computation of Rxz and
Rzx are computationally cheap. For example,

Jxz =

[
Id 0d×(D−d)

∂zd+1:D

∂x1:d
diag(exp(S(x1:d)))

]

⇒ logRxz =

D−d∑
j=1

S(x1:d)j

(7)

• Since fxz and fzx do not require computing the in-
verse of S or T and computing Rzx and Rxz does
not involve computing the Jacobian matrices of S
or T , the functions S and T can as complicated as
needed; i.e. both S and T can be modeled by deep
neural networks.

Figure 2. illustrates the sequential transformation
of configuration space samples to the latent space de-
scribed above. In each RealNVP block the model alter-
nates between the duplication and the affine transfor-
mation of both channels of data to ensure forward and
reverse transformations occur in a reversible manner.

B. Sampling

Samples of the Boltzmann distribution are generated
using Metropolis Monte Carlo (MC) simulations. As de-
scribed in the original paper, the use of a small local
step size is meant to emulate molecular dynamic simula-
tions, ensuring that individual simulations stay trapped
in the metastable states of interest. This method of gen-
erating ”MD” simulation samples generates configura-
tion space samples x, which can be directly used to train
Boltzmann generators.

In each MC step, the system of interest is per-
turbed with an isotropic normal distribution scaled by a
system-dependent σMetro. The proposed configuration
is accepted or rejected using the standard Metropolis cri-
terion, shown in Equation 8.

α(x∗|xi−1) = min

[
1, exp

[
−(u(x∗)− u(xi−1))

kBT

]]
(8)

Where, u(x) represents the energy of a given config-
uration and kBT represents the reduced temperature of
the system.

C. Training a Boltzmann generator

As Noé et al. suggest in the original paper,14 Boltz-
mann generators are trained by combining two modes:
training by examples and training by energy, where the
former utilizes samples drawn from the configuration

space by Monte Carlo or molecular dynamic simula-
tions to train the neural networks and the latter uses the
samples drawn from the prior Gaussian distribution in
latent space.

Specifically, during the training, the parameters of the
neural networks are adjusted such that the distance be-
tween the exact distribution (µ) and the generated dis-
tribution (q) can be minimized, in either the latent or
configuration space. This distance can be measured by
the Kullback-Leibler (KL) divergence. For example, KL
divergence in latent space measuring the distance from
the prior Gaussian distribution µZ(z) to the generated
distribution in latent space qZ(z) can be written as:

KLθ(µZ‖qZ) =

∫
µZ(z) log

(
µZz(z)

qZ(z)

)
dz (9)

Given that

µZ(z) =
e−uz(z)

ZZ
=

e−
1
2 (

z
σ )

2

σ
√

2π
(10)

and

µX(x) =
e−ux(x)

ZX
(11)

Equation 9. can be derived to

KLθ(µZ‖qZ)

= −Hz + logZX + Ez∼µZ(z) [uX(Fxz(z)− logRzx(z)]

(12)

Because HZ and ZX are constant in θ, we define the KL
loss JKL as follows:

JKL = Ez∼µZ(z) [uX(Fzx(z)− logRzx(z)] (13)

Accordingly, when the Boltzmann generator is
trained by energy, it adjusts the parameters in Fzx
(hence the parameters of the inverse of Fxz , Fzx) to min-
imize the KL loss JKL. Interestingly, the first term of
the KL loss, which is the internal energy of the sys-
tem, counteracts the second term (an effective entropic
contribution to the free energy) such that the model
tries to sample low-energy configurations to minimize
u(Fzx(z)) and simultaneously penalize the system for
collapsing into a single metastable state to maximize the
entropy of the generated distribution logRzx(z).

However, it was validated14 that the entropy term
in the KL loss is not sufficient to prevent the so-called
mode collapse, which necessitates the introduction of
the maximum likelihood (ML) loss function (JML), i.e.
training by examples. Mathematically, JML can be de-
rived by either maximizing the probability of configura-
tion samples x in the Gaussian distribution or minimiz-
ing the distance between the generated distribution in
configuration space qX(x) and the Boltzmann distribu-
tion µX(x), i.e. the KL divergence in the configuration
space. JML can be expressed as:

JML = Ex∼ρ(x)

[
1

2σ2
‖Fxz(x)‖2 − logRxz(x)

]
(14)
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where σ is the standard deviation of the prior Gaussian
distribution. Note that since we are not able to sam-
ple from the Boltzmann distribution µ(x) a priori, we
instead approximate it by a sampling ρ(x), the distri-
bution represented by the MC samples used to train the
Boltzmann generator.

While training a Boltzmann generator on the KL loss
and ML loss enables sampling of high-probability states,
sometimes we want to sample low-probability (high-
energy) states such as a transition state along a prede-
fined reaction coordinate. In this situation, we have to
include the reaction coordinate (RC) loss, which can be
defined as:

JRC =

∫
p (r(x)) log p (r(x)) dr(x)

= Ex∼qX(x) log p (r(x))

(15)

where r(x) is the reaction coordinate. Practically, to ac-
curately compute p (r(x)), we employ batchwise kernel
density estimation (KDE)16,17 with K-fold cross valida-
tion optimizing the bandwidth of the Gaussian kernel
functions.

Finally, considering all kinds of loss functions, we de-
fine the total loss function Jtot:

Jtot = wMLJML + wKLJKL + wRCJRC (16)

where the w’s are the weights of the loss functions. In
practice, typically it takes dozens of epochs/hundreds
of iterations to converge the loss function.

D. Latent interpolation

As Noé et al. proposed in the original paper,14 a
trained Boltzmann generator can provide some insights
into the reaction pathways between metastable states by
mapping the paths in latent space back to configuration
space. Specifically, in each system of interest, we first
randomly choose 10 configurations near the local mini-
mum. Then, we pair up these 20 configuration samples
and transform them to latent space, linearly interpolat-
ing between the latent space representations of samples
from different energy minima. In the end, we map the 10
interpolated paths in latent space back to configuration
space, resulting in non-linear reaction paths in configu-
ration space between the energy minima.

E. Free energy calculations

In view of the fact that the generated samples might
be more or less biased by the neural network, to obtain
unbiased samples to compute Boltzmann-weighted av-
erages (like the free energy of the system), we have to
reweight the generated distribution qx(x) to the Boltz-
mann distribution. Therefore, we define a statistical

weight wx(x) such that:

wx(x) =
µx(x)

qx(x)
=
qz(z)

µz(z)
(17)

and

wx(x) ∝ e−ux(Fxz(z))+uz(z)+logRzx(z;θ) (18)

Then, we apply this statistical weight in the kernel den-
sity estimation mentioned in the last section or in a
weight histogram such that the probability of i-th bin
pi can be estimated by:

pi =

∑ni
k=1 wi,k · xi,k∑m

i=1 ni
(19)

where m and ni are the number of bins and the num-
ber of events in the i-th bin, respectively, xi,k is the k-
the sample in the i-the bin, and wi,k is its correspond-
ing statistical weight. Using p (r(x)) calculated by ei-
ther weighted histograms or KDE, we can calculate the
reduced free energy as follows:

f (r(x)) = − log p (r(x)) (20)

Since we don’t know the absolute free energy value,
when plotting a free energy profile, we subtract f (r(x))
by its minimum to take f = 0 as the reference.

III. APPLICATIONS

A. System 1: Double-well Potential (Wei-Tse)

In this study, instead of using Keras18 and Tensor-
Flow19 as the original paper,14 we implemented Boltz-
mann generators in PyTorch.20 Our implementation and
relevant examples are hosted in a GitHub repo. To
ensure the efficacy of our implementation, we start
with the double-well potential model, which can be ex-
pressed as:

u(x) = u(x1, x2) = ax41 − bx21 + cx1 + dx22 (21)

As shown in Figure 3., we adopted (a, b, c, d) =
(1, 6, 1, 1) and the two-dimensional potential model
exhibits two metastable states separated by a high en-
ergy barrier. x2 is used as the reaction coordinate since
it is the slow degree of freedom of the system. To ac-
quire the dataset for training the Boltzmann generator,
we performed a 5000-step Monte Carlo simulation for
each well starting from its local minimum with the re-
duced temperature set as 1. To preserve the Boltzmann
weights in the samples, we include the configuration at
every Monte Carlo step no matter the MC move is ac-
cepted or not. As a result, there are 10002 configuration
samples in the training dataset.

For this simple test system, we build a Boltzmann
generator composed of 3 RealNVP blocks where there
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are two affine coupling layers in each block. In an affine
coupling layer, there is a neural network composed of
three layers for each of the transformation functions (S
and T ). In the neural network, there are 100 nodes in
each layer and the activation functions include the ReLU
function and the hyperbolic tangent function. In addi-
tion, we used Adam optimizer in the gradient descent
method with the learning rate being 0.001. In the end, to
train the Boltzmann generator, we include 2048 samples
for each batch of the data and we train the model for 40
epochs (200 iterations).

FIG. 3. The samples extracted from Monte Carlo simulations
of the double well potential

B. System 2: Müller-Brown potential

The next system of interest we explore in this paper
is a particle on the Müller-Brown (MB) potential energy
surface. This system is well-studied and is often used to
asses reaction path finding algorithm’s abilities to find a
complex reaction coordinates over a complicated land-
scape.21 The MB potential surface is given by:

VMB(x, y) =

4∑
i=1

Ai exp
[
ai(x− x̄i)2+

bi(x− x̄i)(y − ȳi) + ci(y − ŷi)2
(22)

The surface can be described as the sum of 4 Gaus-
sians with centers given by the pairs (x̄j , ȳj). Where the
first 3 Gaussians describe the energy minima on the sur-
face and the last Gaussian creates nearly infinite walls
around the surface, such that the only low energy re-
gions are described by the first 3 Gaussians. The MB
potential parameters are presented in Table I.

TABLE I. MB potential parameters
Parameters 1 2 3 4
aj -1 -1 -6.5 0.7
bj 0 0 11 0.6
cj -10 -10 -6.5 0.7
Aj -200 -100 -170 15
x̂j 1 0 -0.5 -1
ŷj 0 0.5 1.5 1

FIG. 4. Visualization of the sampled points on the MB poten-
tial. The left figure shows the the samples in the x-y plane. The
right figure shows the samples projected onto the (1,−1) vec-
tor vs their energy, giving a better idea of the energetic barriers
present in the MB potential.

The MB potential represents an increase in complexity
from the double-well potential as the potential wells of
interest are no longer defined along 1 dimension of the
simulation. Three simulations were carried out on the
surface of the MB potential, each starting at the centers
of the first 3 Gaussians. The first 3 Gaussians represent
the metastable states the particle can visit during a sim-
ulation. We will refer to the metastable states on this sur-
face as state 1, state 2, and state 3, corresponding to the
potentials from left to right, along x1. All simulations on
the MB potential were performed with a σmetro = 0.02.
These simulations were run at a reduced temperature of
kBT = 1.0 for 10000 steps with a stride of 10 steps.

Figure 4. shows the samples from the 3 simulations
and their corresponding energies projected along the
(1,−1) vector. We see that both simulations starting in
state 1 and state 3 stay in their respective wells, while
the simulation starting in state 2 transitions over the en-
ergetic barrier to state 3, resulting in a combination of
state 2 and state 3 samples from that simulation. Despite
seeing the transition from state 2 to state 3 in our simu-
lation dataset, the MB potential dataset does not have
transitions between state 1 and state 2, which will be a
region of interest when training Boltzmann generators
on this model.

Similar to the double-well potential, we trained mul-
tiple Boltzmann generators on the training samples of
the MB potential. The Boltzmann generator architec-
ture used for the MB potential consisted of 5 RealNVP
blocks, with 2 affine coupling layers per block. Each
affine coupling layer contained S and T transformation
neural networks with 3 hidden layers with 100 nodes
per layer. Hidden layer nodes used the ReLu activation
function and the S output layer used the hyperbolic tan-
gent activation function. The training schedule we used
for the MB potential is similar to that described in Noé et
al.14 An initial model is trained using the ML loss func-
tion for 200 iterations, using a mini-batch size of 200,
with a learning rate of 0.01. Subsequent Boltzmann gen-
erators are initialized with this original ML loss model,
and continued training for 600 iterations using a mini-
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batch size of 1000, with a learning rate of 0.001. The
KL, ML+KL, and ML+KL+RC loss terms were all used
to train Boltzmann generators in this fashion.

C. System 3: Dimer in the Lennard-Jones bath

The final system we will explore in this project is the
bi-stable dimer in a Lennard-Jones (LJ) bath. The dimer
system consists of a 2 particle dimer connected by a
1-D double-well potential (Ubond in Equation 23.), sur-
rounded by 36 solvent particles with repulsive LJ poten-
tials (Usolvent in 23). The system is contained within a
harmonic-box central potential (Ubox in 23), where parti-
cle experience a harmonic potential when they leave the
bounds of the box. This model system has 78 dimen-
sions for the x-y coordinates of each of the particles. The
dimer simulation represents a simple condensed-matter
system, which start to approaches the complexity of full-
atom condensed-matter simulations.

With the increase of dimensions of this system, equi-
librium samples are much harder to generate for two
reasons. Firstly, the 78-D configuration space is expo-
nentially larger than the 2-D systems we’ve explored
previously. Secondly, due to the high density of the sys-
tem, small changes in the position of particles can re-
sult in extremely large energies. The interdependence
of particles positions has not been present in the simple
models we’ve explored up to this point.

U(x) =Ubond + Usolvent + Ubox + Ucenter

Ubond =
1

4
a(d− d0)4 − 1

2
b(d− d0)2 + c(d− d0)

Usolvent =ε

n+1∑
i=1

∑
j=i+1,j 6=2

(
σ

||xi − xj ||

)12

Ubox =

n+2∑
i=1

h(|xix| − lbox)kbox(|xix| − lbox)2+

n+2∑
i=1

h(|xiy| − lbox)kbox(|xiy| − lbox)2

Ucenter =kd(x1x + x2x)2 + kdx
2
1y + kdx

2
2y

(23)

TABLE II. Dimer simulation parameters
Parameter ε σ kd d0 a b c lbox kbox
Value 1.0 1.1 20 1.5 20.0 10.0 -0.5 3.0 100

Another consideration of the dimer system is the ex-
plicit representation of the solvent. As the solvent parti-
cles share the same interaction potentials, they are effec-
tively indistinguishable from each other. If the identity
of each solvent molecule is preserved over the course
of an infinitely long MC simulation, the configuration
space of each solvent particle would include the entirety

of the box, due to the diffusion and exchange of particles
throughout the system. In the short simulations we per-
formed for this system, the particles do not have enough
time to visit the entirety of their configuration space. To
address the permutational invariance of the solvent par-
ticles, we applied the Hungarian algorithm to reassign
particles based on their distance to a reference equilib-
rium sample. This ensures that the x-y coordinates for
each particle stays in a local configurational space, de-
spite particles actually exchanging positions throughout
the box during the simulation.

FIG. 5. Visualizations of the compact (left) and extended
(right) configurations the dimer simulation can visit. Solvent
particles are drawn in black and the dimer particles are drawn
in red.

FIG. 6. Distribution of the dimer bond distance from both
the extended and compact simulations. The potential energy
curve is drawn in blue to show where the compact and ex-
tended configurations are energetically favorable. Note, no
transitions between the extended and compact configurations
are sampled in these simulations.

The dimer system has two metastable states, which
we define as the extended and compact configurations
shown in Figure 5. Transitions between the extended
and compact configurations require significant solvent
rearrangement and generally are not observed in the
short simulations we performed. To sample this system,
we start two simulations in both the extended and com-
pact configuration. Both simulations were run for 50000,
with a reduced temperature of kBT = 1.0. In Figure 6.,
we see that both the compact and extended configura-

Project paper: PHYS 7810: Computational Statistical Physics 6



tions are well sampled according to the potential energy
between the two dimer particles. The 100000 samples
generated from these two simulations were used to train
Boltzmann generators on this system.

Training Boltzmann generators on the dimer system
proved to be more computationally expensive than the
simpler systems. We were able to train a Boltzmann gen-
erator using the ML loss term. The Boltzmann genera-
tor architecture for this system consists of 8 RealNVP
blocks, with 2 affine coupling layers per block. Each
affine coupling layer contains S and T transform net-
works with 3 hidden layers and 200 nodes per layer.
Hidden layer nodes use the ReLu activation function
and the S output layer uses the hyperbolic tangent ac-
tivation function. The training schedule for the ML loss
Boltzmann generator trained for 250 iterations uses a
mini-batch size of 8000 samples, with a learning rate of
0.0001. Other loss functions are too computationally ex-
pensive to generate results for in a reasonable amount
of time.

IV. RESULTS AND DISCUSSIONS

A. System 1: Double well Potential

Given the fact that the ML loss helps the Boltzmann
generator to focus on relevant parts of state space and
is therefore useful in the early stages of training, for this
simple system, we start with training the model by ex-
amples (on the ML loss). Then, based the model trained
on the ML loss (ML model), we train the model on the
following three combinations of loss functions:

• KL model: train the ML model on the KL loss
for another 200 iterations. (wML, wKL, wRC) =
(0, 1, 0).

• ML + KL model: train the ML model on the ML
loss and KL loss simultaneously for another 200
iterations. (wML, wKL, wRC) = (1, 1, 0).

FIG. 7. The linear interpolation in latent space with the RC
model for the double well potential model

• RC model: train the ML model on the all kinds of
loss functions (ML, KL, and RC) simultaneously
for another 200 iterations. (wML, wKL, wRC) =
(1, 1, 1).

As a result, the loss functions of all of the models
converge within 200 iterations (see Double-well poten-
tial.ipynb). As shown in Figure 8., the top row of Fig-
ures shows how the samples in configuration space are
mapped to latent space. The samples correspond to the
left well in the configuration space are colored in red,
while the ones corresponding to the right well are col-
ored in silver (see Figure 3.). From the top row of Fig-
ures, we can observe that the ML loss function does
help the model sample both energy minima. On the
other hand, focusing on the most stable metastable state
(which is the well on the left), the KL model maps sam-
ples in the well on the left to the center of the prior
Gaussian distribution, while the rest of the samples are
mapped to a low-probability region. Therefore, when
converting random samples drawn from the Gaussian
distribution to configuration space, the KL model gen-
erates much fewer samples in the right well, but more
samples in the left well compared with the ML model.
Predictably, as an intermediate between the ML model
and the KL model, the ML + KL model combines the
strengths of the two such that it generates more configu-
rations of the lowest energies, but also generates a good
amount of samples in the well on the right at the same
time. RC model, which trains on the RC loss with RC
defined as x2, exhibits similar behaviors as the ML + KL
model.

With a trained Boltzmann generator, we perform lin-
ear latent interpolation with each model to seek phys-
ical interpretations of direct paths in latent space. As
a result, as the straight pathways in latent space are
mapped to configuration space, they turn out to be non-
linear pathways that correspond to transition region
having low energy (hence high probability) between the
metastable states, which are in agreement with the re-
sults presented in the original paper.14 Although reac-
tion pathways in practice are not necessarily the paths
with the lowest energy, these predicted paths still pro-
vide decent candidates of reaction coordinates for bias-
enhanced or path-based sampling methods. (For the la-
tent interpolation results of other models, please refer to
Double-well potential.ipynb.)

Lastly, given that the Boltzmann generators trained
on different loss functions are able to generate statisti-
cally independent configuration samples, we combine
them with either weighted histograms or batchwise ker-
nel density estimation. Figure 9. shows the free energy
as a function of x2, which is the reaction coordinate of
the double-well potential, predicted by the combination
of KDE with different models. As can be seen in the
Figure, while there is a discrepancy between the pre-
dicted curve and the analytical solution around the sad-
dle point of the free energy surface (which is a region
of high energy), each model has decent performance at
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FIG. 8. Samples generated in latent space (the top row) and configuration sapce (the bottom row) by different models

FIG. 9. The free energy profile of the double well potential model as a function of the selected reaction coordinate (x2) predicted
by the combination of KDE with different models.

generating low-energy configurations. Given that the
data points of high-energy configurations are not re-
ported in free energy profiles in the original paper, our
models well agree with the ones implemented in the
original paper. In addition, the perfect overlap between
the prediction and the analytical solution at both energy
minima enables accurate computation of the free energy
difference between two metastable states, showing the
strength of Boltzmann generators of avoiding the usage
of alchemical intermediate states or the knowledge of
the predefined reaction coordinate compared with other
advanced sampling methods in free energy calculations.

B. System 2: Müller-Brown potential

Boltzmann generators trained on the MB potential
samples are easily able to recreate the phase-space dis-
tribution. We see good agreement between the gener-
ated points and the underlying potential energy for all
models in Figure 11. Comparing the ML model to the

KL model, we see much better sampling along the low
energy path between the state 1 and state 3 potential
wells. This can be attributed to the KL loss’s penal-
ization for high energy configurations. This forced the
samples that the ML loss Boltzmann generator placed
between the systems to find a lower energy path when

FIG. 10. Interpolation of points from the MB potential states
1 and 3 in the latent space, transformed into the configuration
space.
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FIG. 11. Resulting distributions in the latent and configuration space for the MB potential. Training samples transformed to the
latent space from state 1, state 2 and state 3 are colored red, gray and blue respectively. White points represent generated samples
from the respective Boltzmann generator models.

further trained on the KL loss Boltzmann generator.
As the KL model already had samples near the min-

imum energy transition path between state 1 and state
2, the ML+KL and RC loss models saw no change in the
placement of samples between states 1 and 2. However,
looking at the free energy profile of the RC loss model,
shown in Figure 12., we see a better approximation of
the large free energy barrier between state 1 and state 2,
due in part to slightly better sampling in that low prob-
ability region. Noé et al. showed that the RC loss term
greatly contributed to sampling the transition between
regions, therefore we suspect there may be an error in
our current implementation of the RC loss term.

FIG. 12. Free energy approximation from various Boltzmann
generator model types for the MB potential.

By interpolating between samples from state 1 and

state 2, we see that the Boltzmann generators are able
to propose reasonable reaction paths over the complex
MB potential surface. In Figure 10., we see a collapse
of interpolated lines in the latent space to a single re-
action coordinate in the configuration space, similar to
what was observed in the original paper. With just sam-
ples from the individual metastable states, Boltzmann
generators were able to estimate the reaction coordinate
between all 3 states on the MB potential surface.

C. System 3: Dimer in the Lennard-Jones bath

Despite only being able to train an ML loss Boltzmann
generator on the dimer simulation, we were able to gen-
erate reasonable samples by visual inspection. In Fig-
ure 13., we see that the Boltzmann generator is able to
learn the placement of solvent particles about the dimer.
Some particle phase spaces remained localized to one
area, shown by the average particles (in black and red)
at the center of their distribution (gray), of the simula-
tion. However the solvent particles that rearranged to
allow the dimer to transition between the extended and
compact distributions are not as localized.

Figure 14. shows that the generated configurations
sample the intermediate states between the extended
and compact configurations. However, when compar-
ing the energy of the generated configurations, we see a
large discrepancy between the energies from the simula-
tion energies and the generated energies, shown in Fig-
ure 15. The ML loss model is effective at matching the
configuration space distribution, but does not directly
use the energy (u(x)) function to distinguish favorable
and unfavorable configurations.
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FIG. 13. Visualization of the generated dimer system distribu-
tion. Average solvent and dimer positions are drawn in black
and red respectively. All generated particle positions are plot-
ted in gray.

FIG. 14. Generated distribution of bond distances (gray) for
the dimer system using the ML loss function. The potential
energy along the bond (blue) shows the favorable distances of
the dimer particles.

FIG. 15. Comparison of the energy distributions of the simu-
lated and generated configurations of the dimer system.

Due to the large differences in energy between the
simulated and generated configurations, when applying
the free energy calculation we applied to the previous
systems, the statistical weights for all generated sam-
ples were zero, meaning the configurations generated
were too far from the true Boltzmann distribution to use
reweighting methods. Unfortunately, when applying
more complex Boltzmann generators to the dimer sys-
tem, such as the KL loss model, the calculation of com-
puting the gradient of the dimer system’s energy proved
to be computationally intractable with our implementa-
tion of the energy function. When revisiting this project,
more care will be needed when programming the en-
ergy function, such that the gradient of the energy is
computed as efficiently as possible. We also explored
using PyTorch’s GPU acceleration for handling the gra-
dient calculation with little success.

V. CONCLUSION

In this study, we were able to apply a variety of Boltz-
mann generators to 3 toy model systems. Using the
samples generated from these Boltzmann generators we
were able to generate statistically independent samples
equilibrium from multiple metastable stables separated
by large energetic barriers in one shot. Thereby, address-
ing the rare event-sampling problem many simulations
are plagued with using deep learning algorithms. Us-
ing Boltzmann generators we were also able to estimate
free energies to a high degree of accuracy for the double-
well potential and MB potential systems. Using latent
space interpolation, we could also generate reaction co-
ordinates on both potential energy surfaces.

Unfortunately, the Boltzmann generator applied to
the dimer system was not able to generate samples close
enough to the Boltzmann distribution to estimate free
energies between states. However, we were still able to
apply a Boltzmann generator to a much higher dimen-
sional system than the first two potential energy sur-
faces we explored in this paper, showing that it is possi-
ble to train Boltzmann generators on larger dimensional
spaces. In Noé et al. original paper, Boltzmann gener-
ators were used to estimate the free energy of a confor-
mational switch in a BPTI protein.14 Boltzmann gener-
ators represent a novel way of addressing rare event-
sampling in many-body systems for less computational
cost than traditional enhanced sampling methods.

The challenging part of applying any deep learning
technique to a problem is choosing an appropriate repre-
sentation of the data that will capture the features of the
simulation we’re interested in studying. In the dimer
simulation, we saw a glimpse of this, as we removed
the permutational invariance of the solvent through the
relabeling of the solvent particles. For protein systems,
deep learning methods often represent the various con-
figurations of protein using a combination of torsional
degrees of freedom and atom cartesian coordinates.14,22
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Boltzmann generators, a flow-based generative
model, are especially promising in the field of molec-
ular simulations due to a high degree of scalability.
Typical applications of RealNVP networks in deep
learning include celebrity face generation23 and raw
audio waveform generation24 which can address prob-
lems with 106 dimensions. Granted we have samples of
states of interest, Boltzmann generators can be a useful
tool for estimating free energy differences in protein-
ligand binding complexes, protein folding dynamics,
and macrologies phase changes, as many problems can
be framed similarly to the problems presented in this
project.

VI. FUTURE APPLICATIONS

A. Exploration of the configurational space of flexible
molecules

The sampling of the configurational space of flexible
molecules, such as an unfolded protein, or a protein-
nucleic acid binding complex, has been one of most chal-
lenging problems in the field, not only due to the rough
free energy surface and high energy barriers between
the metastable states (e.g. the bound state and the un-
bound state of a binding complex), but also the consider-
ably large phase space of the system as a result of signifi-
cant flexibility of the molecules. The curse of dimension-
ality exacerbates the problem of selecting reaction coor-
dinates that are sufficient to comprehensively capture all
the slow degrees of freedom. In addition, investigation
with sampling methods taking advantages of alchemical
intermediate states is not even easier, since the scaling of
the electrostatic interactions between the ligand and the
receptor might lead to the so-called greasy core problem,
i.e. after the electrostatic interactions are decoupled, the
ligand becomes kinetically trapped because it is too hy-
drophobic to get into the binding cavity which is full of
water molecules.

In this situation, Boltzmann generators could be a
promising approach on account of its strengths of not re-
lying on predetermined reaction coordinates or alchemi-
cal intermediate states. For example, the C-terminal SH2
domain of phospholipase C-γ1 (PLCC) is known for its
ability to bind to particularly diverse peptides that devi-
ate from its specificity profile. This structure along with
similar species have been received increasing research
attention25,26 in their binding mechanisms of dissimilar
ligands. In this situation, if Boltzmann generators are
able to generate statistically independent configurations
from both the bound state and the unbound states given
a reasonable training dataset, we can not only accurately
compute the binding free energy, but also hopefully de-
termine the binding ensemble of the binding complex. If
the binding ensemble is correctly predicted, we can ex-
amine whether PLCC is able to adopt alternate binding
conformations which were not predicted based on the

available crystal structures and the consensus sequence
obtained experimentally. From the most representative
binding structure, we are also likely to get more insight
into the binding mechanism of PLCC and explain its
multimodal specificity.

B. Estimating heteropolymer secondary structure

Applying Boltzmann generators to macro-molecule
folding is another possible avenue for novel research.
Many research groups are studying and designing non-
natural heteropolymers.27,28,29 These macromolecules
behave similarly to proteins, however can be syntheti-
cally designed to have much more functional diversity.
A big effort in the field of heteropolymers is to design
the secondary structure given a proposed monomer.
Currently the design of novel heteropolymers relies
heavily on chemical intuition and requires a great deal
of experimental trial and error. Computational struc-
ture prediction methods for short N-mers of a novel het-
eropolymer is not a trivial task. Applying a Boltzmann
generator with adaptive sampling to the internal coordi-
nates of a proposed heteropolymer N-mer, could be an
efficient way to quickly explore and generate ensembles
of folded and unfolded configurations.
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