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Introduction

• Challenges of  sampling equilibrium states

• Architecture of  a Boltzmann generators

• Flow-based generative models

• Real-valued non volume-preserving 

(RealNVP) transformation network

• Affine coupling layers in an NVP block

• Loss functions for training

Applications of  Boltzmann 

generators

• Systems of  interest

✓ Double-well potential

✓ Muller Brown potential

✓ Dimer in Lennard-Jones bath

• Acquisition of  training datasets

• Training of  the inverse generator

• Free energy calculations
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Conclusion

• Broader significance of  Boltzmann 

Generators in modeling community

• Work expectation for the following week

✓ Correct KL loss term

✓ Dimer in LJ bath

• Future Applications

✓ Protein/Ligand systems

✓ Protein folding application
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The usefulness of  molecular simulations (MC or MD simulations) is 

limited in systems with slow kinetics

Introduction

• Large free energy barriers between metastable 

states cause kinetic bottlenecks. 

• Advanced sampling methods

✓ Metadynamics and its variations

✓ Umbrella sampling

✓ Replica exchange, or expanded ensemble

• Boltzmann generators
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A Boltzmann generator is trained to learn the transformation between 

probability distributions in the configuration and the latent space

Introduction

• Goal: approximate the Boltzmann distribution

• Procedures to generate 𝑝𝑥(𝑥)

✓ Taking the samples in the real space as the input

✓ Train the inverse generator 𝐹𝑥𝑧 with samples 𝑥

✓ Draw samples from the latent space

✓ Map the latent samples back to the 

configuration space

Generator Inverse

generator
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Boltzmann generators are a application of  flow-based generative models

Introduction

• 𝐹𝑥𝑧 and 𝐹𝑧𝑥 are composed of  “a flow of ” non volume-persevering (NVP) blocks.

• The volume of  space is changed between different spaces within the flow.
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The affine coupling layers in each real NVP block ensure efficient 

computations of  𝑮−𝟏 and 𝒅𝒆𝒕(𝑱𝑮)

Introduction

Inverse Generator 𝑮−𝟏 Log of  𝒅𝒆𝒕(𝑱𝑮)

• Each affine coupling layer performs a scale-and-shift transformation

(Channel 1: copy)

(Channel 2: transform)
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Introduction
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• Each affine coupling layer performs a scale-and-shift transformation

The ordering of  the two channels in a layer is reversed after each iteration
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Minimization of  the loss functions ensure the robustness of  the network

Introduction

• Some important notations

✓ 𝜇𝑧(𝑧): Gaussian prior distribution in the latent space

✓ 𝜇𝑥(𝑥): Boltzmann distribution in configuration space 

✓ 𝑞𝑧(𝑧): Distribution generated by the inverse generator 𝐹𝑥𝑧

✓ 𝑞𝑥(𝑥): Distribution generated by the generated 𝐹𝑧𝑥

• Maximum likelihood loss 𝐽𝑀𝐿

✓ Minimizing 𝐽𝑀𝐿 maximizes the likelihood of  the configuration samples in 

Gaussian prior density the latent space 

✓
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KL loss and RC loss facilitate the sampling at different low energy states 

and high energy states, respectively

Introduction

• Kullback-Leibler loss 𝐽𝐾𝐿
✓ KL divergence 𝐷𝐾𝐿(𝑝||𝑞) measures the distance between distribution 𝑝 and 𝑞

✓ In the latent space: 

• Reaction coordinate loss 𝐽𝑅𝐶
✓ Promotes sampling of  high-energy states in a specific direction of  RC

✓

• Total loss:
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We started with double-well potential to construct Boltzmann generators

Applications of Boltzmann generators – System 1: Double-well potential

• Goals for the system:

✓ Generate samples at both metastable states and compute the free energy difference.

✓ Plot the free energy profile as a function of  the reaction coordinate.

✓ Assess the Boltzmann generators trained on different loss functions.
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We extracted configuration samples from each energy minima using 

Monte Carlo (MC) simulations

Applications of Boltzmann generators – System 1: Double-well potential

5000 samples for 

each minimum

11



Department of  Chemical and Biological Engineering, University of  Colorado Boulder

A simple set of  parameters is able to converge the ML loss with in a 

smaller number iterations

Applications of Boltzmann generators – System 1: Double-well potential

• Parameters

✓ 3 NVP blocks 

✓ 2 coupling layers per each NVP block

✓ 3 NN layers per each transformation fn

✓ 100 nodes per each layer

✓ Activation functions: ReLU and tanh

✓ Optimizer: Adam, with LR as 0.001

✓ Batch size: 1000 samples

✓ Number of  iterations: 200
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Boltzmann generators trained on ML loss function was able to generate 

reasonable configurations in the real space

Applications of Boltzmann generators – System 1: Double-well potential

The process of  training the inverse generator 𝐹𝑥𝑧(𝑥)

Input 1st NVP block 2nd NVP block 3rd NVP block, output
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Boltzmann generators trained on ML loss function was able to generate 

reasonable configurations in the real space

Applications of Boltzmann generators – System 1: Double-well potential

The process of  training the generator 𝐹𝑧𝑥(𝑧)

Input 1st NVP block 2nd NVP block 3rd NVP block, output
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Boltzmann generators trained on ML loss function was able to generate 

reasonable configurations in the real space

Applications of Boltzmann generators – System 1: Double-well potential

Configurations generated by the Boltzmann generator trained on ML loss
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The higher-energy samples were mapped too far away from the center of  

the Gaussian distribution by the Boltzmann generator trained on KL loss

Applications of Boltzmann generators – System 1: Double-well potential

Configurations generated by the Boltzmann generator trained on KL loss
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The Boltzmann generator trained on ML and KL loss at the same time 

produced an intermediate result

Applications of Boltzmann generators – System 1: Double-well potential

Configurations generated by the Boltzmann generator trained on ML + KL loss
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The generated distribution approximating the Boltzmann distribution 

requires improvements

Applications of Boltzmann generators – System 1: Double-well potential

ML model KL model MLKL model
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Statistical weights improve the quality of  free energy estimation

Applications of Boltzmann generators – System 1: Double-well potential

• 𝑥𝑖,𝑘: k-th sample in the i-th bin

• 𝑛𝑖: number of  events in i-th bin

• 𝑚: number of  bins

ML modelKL modelMLKL model
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• Muller-Brown potential introduces new considerations:

✓ Intermediate metastable state

✓ Multidimensional transition-states

Particle in a Muller-Brown potential to train Boltzmann generators

Applications of Boltzmann generators – System 2: Muller-Brown potential 
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• Muller-Brown potential introduces new considerations:

Particle in a Muller-Brown potential to train Boltzmann generators

Applications of Boltzmann generators – System 2: Muller-Brown potential 
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Boltzmann generators trained on ML loss function are able to generate 

reasonable configurations in the real space

• Parameters

✓ 5 NVP blocks 

✓ 3 layers per each NVP block

✓ 100 nodes per each layer

✓ Activation functions: ReLU and tanh 

output layer

✓ Optimizer: Adam, with LR as 0.001

✓ Batch size: 128 samples

✓ Number of  iterations: 200

Applications of Boltzmann generators – System 2: Muller-Brown potential 
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Boltzmann generators trained on ML loss function are able to generate 

reasonable configurations in the real space

• ML loss maximizes the likelihood of  the inverse transform to place samples within the latent 

gaussian 

Applications of Boltzmann generators – System 2: Muller-Brown potential 
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• KL loss maximizes the likelihood of  the forward transform to place samples within the latent 

the Boltzmann distribution (i.e. low energy configurations) 

Training on the KL loss function identified the global minima

Applications of Boltzmann generators – System 2: Muller-Brown potential 
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Applications of Boltzmann generators – System 2: Muller-Brown potential 

Training on the KL+ML loss function

• Combination of  both terms blends characteristics of  both loss terms
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Applications of Boltzmann generators – System 2: Muller-Brown potential 

Free energy calculation on Muller-Brown potential

• Preliminary Muller-Brown potential free energy surface

• Preliminary Muller-Brown potential free 

energy surface

• Poor sampling in local minima
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Applications of Boltzmann generators – System 3: Bistable dimer in LJ bath

Boltzmann generator’s applied to condensed matter simulations

• Bistable dimer in LJ bath considerations:

✓ Inclusion of  an internal coordinate 

potential
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Applications of Boltzmann generators – System 3: Bistable dimer in LJ bath

Boltzmann generator’s applied to condensed matter simulations

• Bistable dimer in LJ bath considerations:

✓ Inclusion of  an internal coordinate 

potential

✓ 76 dimensional problem

✓ Solvent permutational invariance

✓ Dense system
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Applications of Boltzmann generators – System 3: Bistable dimer in LJ bath

Boltzmann generator’s applied to condensed matter simulations

• Bistable dimer in LJ bath considerations:

✓ Inclusion of  an internal coordinate 

potential

✓ 76 dimensional problem

✓ Solvent permutational invariance

✓ Dense system
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Conclusion - Broader significance

Boltzmann generators are a promising  application of  machine learning  

in molecular modeling

• Rare event-sampling in many-body systems is an active field of  research:

✓ Boltzmann generators provides a one-shot sampling of  metastable states

✓ Reaction coordinate free sampling method

✓ Highly scalable ML algorithm

✓ Lower computational cost than traditional enhanced sampling methods

• Application to biomolecular systems

✓ Noé et al. applied Boltzmann generators to protein system

✓ Many similarly framed problems in biomolecular simulations
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Conclusion - Continued work

• We are unable to reproduce KL loss results from the paper

Much of  the results shared today were preliminary results and requires 

further work

K
L
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Conclusion - Continued work

Much of  the results shared today were preliminary results and requires 

further work

• We are unable to reproduce KL loss results from the paper

• Implement the reaction coordinate loss term (JRC)

• Latent space interpolation

• Apply Boltzmann generators to the dimer in LJ bath system

• Tidy up Jupyter-notebooks and github repository
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Future work

Conclusion - Future work

• Applying Boltzmann generators in our research:

✓ Provides insight into the binding affinity of  the 

complex.

✓ Determines a binding ensemble. 

✓ Enables the examination of  alternate binding 

conformations not predicted experimentally

✓ Provides insight into the multimodal specificity 

and the binding mechanism of  a binding 

complex.
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• Applying Boltzmann generators in our research:

✓ Peptide folding transitions

Future work

Conclusion - Future work

Secondary Structure

Random Structure

Metropolis-Minimization Boltzmann Generator
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Thank you for listening!

Any questions?

36


