PHYS 7810 - Computational statistical physics
Boltzmann generators: Efficient sampling of equilibrium states of

many-body system with deep learning

Final Project Presentation

Date: 04.23.2020

Lecturer: Dr. Matt Glaser

Presenter: Wei-Tse Hsu and Lenny Fobe

@EJ University of Golorado Boulder Department of Chemical and Biological Engineering, University of Colorado Boulder



Outline

Introduction Applications of Boltzmann

, e generators
* Challenges of sampling equilibrium states
* Systems of interest

* Architecture of a Boltzmann generators
v Double-well potential

* Flow-based generative models
v" Muller Brown potential

* Real-valued non volume-preserving -
Dimer in Lennard-Jones bath

(RealN'VP) transformation network
* Acquisition of training datasets

* Affine coupling layers in an NVP block

* Training of the inverse generator

* Loss functions for training
* Free energy calculations
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Outline

Conclusion

* Broader significance of Boltzmann

Generators in modeling community * Future Applications
*  Work expectation for the following week v' Protein/Ligand systems
v' Correct KL loss term v" Protein folding application

v" Dimer in L] bath
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Introduction

The usefulness of molecular simulations (MC or MD simulations) is
limited in systems with slow kinetics

* Large free energy barriers between metastable
Metadynamics
states cause kinetic bottlenecks.

* Advanced sampling methods

v Metadynamics and its variations
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v Umbrella sampling

v" Replica exchange, or expanded ensemble

o 8 10

PY B Olth ann g ener at OfS Centers of llnass separation distance (nm)

Be Boulder.

@j University of Colorado Boulder Department of Chemical and Biological Engineering, University of Colorado Boulder




Introduction

A Boltzmann generator is trained to learn the transformation between
probability distributions in the configuration and the latent space

* Goal: approximate the Boltzmann distribution

1. Sample Gaussian
distribution

* Procedures to generate p, (x)

v' Taking the samples in the real space as the input
v' Train the inverse generator F,, with samples x

v Draw samples from the latent space
4

Map the latent samples back to the

2. Generate
configuration space distribution Px(X) M
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Introduction

Boltzmann generators are a application of flow-based generative models

* F,; and F;, are composed of “a flow of” non volume-persevering (NVP) blocks.

* The volume of space 1s changed between different spaces within the flow.

pz(X) = p,(z) - |det ngg(:x:)|_1 = loppiix) =lovp: (H:(x)) tloo R

dfs |7 | ? |
pi(zi) = pi—1(2zi-1) ‘det(ﬁ)

Zgy ~~ pO(Zo) Z; ~ pi(Zi) XL pK(ZK)
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Introduction

The affine coupling layers in each real NVP block ensure efficient
computations of G~ and det(J)

log pz(x) = log p,(Fy2(x)) + log Ry,

Inverse Generator G~ 1 Log of det(J )

* Each atfine coupling layer performs a scale-and-shift transformation

Z1.d — X1:d (Channel 1: copy)
Z4d+1:D = Xd+1:D O GXP(S(Xlzd; 9)) s T(Xlzd; 9)

(Channel 2: transform)

fﬂﬁz (Xlzda Xd—i—l:D) : {

- [azld O4x(D-a) E Ly ZD—d e
L dsmine ) L e
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Introduction
The ordering of the two channels in a layer is reversed after each iteration

* Fach affine coupling layer performs a scale-and-shift transformation

Z1:d — X1:d (Channel 1: copy)

f (Xlzda Xd—l—l:D) .
- L il = Xd11D O eXp(S(Xlzd3 9)) = T(Xlzd; 9)
(Channel 2: transform)

Channel 1: Channel 1:
Channel 1: copy transform Channel 1: copy transform
Channel 1 ° D > 0 >
W ¢ & 4 :
X ) @
‘v | g S
Channel 2 i | | > X + —> | >
Channel 2: Channel 2: copy Channel 2: Channel 2: copy
transform transform
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Introduction
Minimization of the loss functions ensure the robustness of the network

* Some important notations
v U,(2): Gaussian prior distribution in the latent space
v Uy (x): Boltzmann distribution in configuration space
v q,(2): Distribution generated by the inverse generator E,,
v q,(x): Distribution generated by the generated F,
*  Maximum likelithood loss [yt
v' Minimizing J5;; maximizes the likelihood of the configuration samples in

Gaussian prior density the latent space

7 i — EXN[,L(X) [#HFQ?Z(Xv 9)||2 7 log RHTZ(X; 9)}
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Introduction

KL loss and RC loss facilitate the sampling at different low energy states
and high energy states, respectively

e Kullback-Leibler loss [k

v KL divergence Dy (p||q) measures the distance between distribution p and g
v" In the latent space:

Jrrp(p:llg.) = E, u(z) [u(Fz(2;0)) — log R..(2;0)]
* Reaction coordinate loss Jpe

v Promotes sampling of high-energy states in a specific direction of RC
v Jro = [ p(r(x))logp (r(x)) dr(x) = Exg, (x) log p(r(x))
* 'Total loss:
J=wymrIur +wkrJxkrL + wreJre
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Applications of Boltzmann generators — System 1: Double-well potential

We started with double-well potential to construct Boltzmann generators

* Goals for the system:
v" Generate samples at both metastable states and compute the free energy difference.
v' Plot the free energy profile as a function of the reaction coordinate.

v' Assess the Boltzmann generators trained on different loss functions.

Contour plot of the double-well potential H(x) Cross section of the double-well potential at x; = 0

Potential energy u(x;)
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0
-4 -2 0 2 4
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Applications of Boltzmann generators — System 1: Double-well potential

We extracted configuration samples from each energy minima using
Monte Carlo (MC) simulations

uix) =Vl ool —ary b terl O

ta e di— il Gl

Contour plot of the double-well potential H(x) Cross section of the double-well potential at x; = 0

540
450 5000 samples for
. 360 each minimum
’ : 270
e o

Potential energy u(x;)
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Applications of Boltzmann generators — System 1: Double-well potential

A simple set of parameters is able to converge the ML loss with in a
smaller number iterations

* Parameters
3 NVP blocks ML loss as a function of teration number
2 coupling layers per each NVP block

3 NN layers per each transformation fn

100 nodes per each layer

w2
[92]
=}
—
—
=

Activation functions: Rel.U and tanh
Optimizer: Adam, with LR as 0.001

BatCh S1z¢e: 1000 samples 0 25 50 75 100 125 150 175 200

Iteration number

NS AN BN RN N

Number of iterations: 200
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Applications of Boltzmann generators — System 1: Double-well potential

Boltzmann generators trained on ML loss function was able to generate
reasonable configurations in the real space

The process of training the inverse generator F,(x)

Input 15t NVP block 284 N'VP block 34 N'VP block, output

Bivariate normal distribution 5 Bivariate normal distribution P(z) . Bivariate normal distribution P(z) " Bivariate normal distribution P(z)

(latent space, z = Fy,(x)) (latent space, z = Fy,(x)) G 0.144 (latent space, 7, e 0.144 (latent space, z = 0.144

0.120 0.120 ¥ | o120

0.096 p . 0.096 e ey 0.096

0.072 ' ’ 0.072 ) v 0.072
R g =3

0.048 0.048 0.048
0.024 0.024 0.024

0.000 0.000 0.000
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Applications of Boltzmann generators — System 1: Double-well potential

Boltzmann generators trained on ML loss function was able to generate
reasonable configurations in the real space

The process of training the generator F, (2)

Input 1t NVP block 22d NVP block 34 NVP block, output

Input distribution 1st NVP block 2nd NVP block 3rd NVP block, generated samples H(x)

54
45
e
[
-
e
X

Be Boulder.

@j University of Colorado Boulder Department of Chemical and Biological Engineering, University of Colorado Boulder

14



Applications of Boltzmann generators — System 1: Double-well potential

Boltzmann generators trained on ML loss function was able to generate

reasonable configurations in the real space

Configurations generated by the Boltzmann generator trained on ML loss

H(x) H(x)

y ; Bivariate normal _. 1var1ate Bgemal 1stut10n Contour plot of the double-well potential
(latent space, z=F (lafent §pac._e, ZzZ'pE)- . | (configuration space, x = Fx(z))
-
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Applications of Boltzmann generators — System 1: Double-well potential

The higher-energy samples were mapped too far away from the center of
the Gaussian distribution by the Boltzmann generator trained on KL loss

Configurations generated by the Boltzmann generator trained on KL loss

H(x) H(x)
Bi iat: 1 distributi Bi iat 1 distributi
5 Contour plot of the double-well potential 3 lvanae norma cisirouion k VA RROR RS 08 l uton . Contour plot of the double-well potential i

(configuration space, x ~ p(x)) (avent space, zzEx () (lat?nt space, 2. p(z)
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Applications of Boltzmann generators — System 1: Double-well potential

The Boltzmann generator trained on ML and KL loss at the same time
produced an intermediate result

Configurations generated by the Boltzmann generator trained on ML + KL loss

H(x) H(x)

Bivariate normal distribution Bivariate normal distribution
(latent space, z = Fy,(x)) fent space, z~ e
K 5 E. Q 23 . 2 o s 9
- 2 . N - : =
Y . s
: Z g 5 2 2 .
zZ Z
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Applications of Boltzmann generators — System 1: Double-well potential

The generated distribution approximating the Boltzmann distribution
requires improvements

Z(a:l) 2t fe—u(ml,azg)dx2 e e—(xf—fix?—l—m) ffooo e—xgde B ﬁ . e—u(z1)
fana,lytical(xl) — = i Z(Cl?l) - U(CU1) s 1H(ﬁ) — inl = 633% o 5 e ln(ﬁ)

festimated(xl) e 1Ilp($1)

Free energy as a function of x;

Free energy as a function of x;

Free energy as a function of x;

ML model MILKIL. model
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Applications of Boltzmann generators — System 1: Double-well potential

Statistical weights improve the quality of free energy estimation

el (Z)

5 6 K B
WslX) = 5569 T 1@
Free energy as a function of x;

Wy (X) x e Uz (Fzz(2))+uz(z)+log R.z(2;0)
MLKL model
* X k-th sample in the i-th bin

* n;: number of events in i-th bin
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* m: number of bins

n
D; = L Wy (T, k)
/T m :
i=1 T
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Applications of Boltzmann generators — System 2: Muller-Brown potential

Particle in a Muller-Brown potential to train Boltzmann generators

Muller-Brown potential introduces new considerations:

v’ Intermediate metastable state

v Multidimensional transition-states

=
=
5
L
=
u
=]

Be Boulder.

@ University of Colorado Boulder Department of Chemical and Biological Engineering, University of Colorado Boulder

20



Applications of Boltzmann generators — System 2: Muller-Brown potential

Particle in a Muller-Brown potential to train Boltzmann generators

* Muller-Brown potential introduces new considerations:
1
u(zy, x2) = a Y Ajeap [aiz — 2;)° + bi(z — ;) (y — §;)) + c;(y — §;)°]
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Applications of Boltzmann generators — System 2: Muller-Brown potential

Boltzmann generators trained on ML loss function are able to generate

reasonable configurations in the real space

ML loss as a function of iteration number * Parameters

v

v
v
v

NS

Fi=] 100 125 150 175
lteration number
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5 NVP blocks

3 layers per each NVP block

100 nodes per each layer

Activation functions: RelLU and tanh
output layer

Optimizer: Adam, with LR as 0.001
Batch size: 128 samples

Number of iterations: 200
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Applications of Boltzmann generators — System 2: Muller-Brown potential

Boltzmann generators trained on ML loss function are able to generate
reasonable configurations in the real space

* ML loss maximizes the likelihood of the inverse transform to place samples within the latent

gaussian It = Byt [522 || Fos(x;0) |12 — log Ry (x5 60)]

_ Bivariate normal distribution _ Bivariate normal distribution

(latent space, z = F(x))
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Applications of Boltzmann generators — System 2: Muller-Brown potential

Training on the KL loss function identified the global minima

* KL loss maximizes the likelthood of the forward transform to place samples within the latent

the Boltzmann distribution (i.e. low energy configurations)

Jrr(p:llg.) = Eznu(z) [u(F2z(2;0)) — log R.»(2;0)]

P(z)
. Bivariate normal distribution . Bivariate normal distribution

(latent space, z = F,.(x))

1 IZ:I
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Applications of Boltzmann generators — System 2: Muller-Brown potential

Training on the KL+ML loss function

e (Combination of both terms blends characteristics of both loss terms

J=wpyrIymr +wrrJkr

P(2) P(2)
) Bivariate normal distribution o Bivariate normal distribution

{latent space, z = F,.[(x)) FLLH (latent spa.ce Z~pt':2}] .
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Applications of Boltzmann generators — System 2: Muller-Brown potential

Free energy calculation on Muller-Brown potential

* Preliminary Muller-Brown potential free energy surface

Free energy as a function of x;

* Preliminary Muller-Brown potential free

energy surface
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— * Poor sampling in local minima

Boltzman Generator
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Applications of Boltzmann generators — System 3: Bistable dimer in L] bath

Boltzmann generator’s applied to condensed matter simulations

* Bistable dimer in L] bath considerations:
v" Inclusion of an internal coordinate ‘W@{W‘l@&&
potential
1 L .
Ua(x) = 7a(d = do)* = 2b(d — do)? + e(d — do)

1
o)

US(T@J) — de | —

T?’J.? 050 075 00 125 150 175 200 225 250

Dimer Distance
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Applications of Boltzmann generators — System 3: Bistable dimer in L] bath

Boltzmann generator’s applied to condensed matter simulations

* Bistable dimer in L] bath considerations:
v Inclusion of an internal coordinate
potential
v' 76 dimensional problem
v' Solvent permutational invariance

v" Dense system

Be Boulder.
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http://drive.google.com/file/d/1wmBt_BvAcP0nzIX94C7v49KAlCIQBtna/view

Applications of Boltzmann generators — System 3: Bistable dimer in L] bath

Boltzmann generator’s applied to condensed matter simulations

* Bistable dimer in L] bath considerations:

v' Inclusion of an internal coordinate

potential
v' 76 dimensional problem

v' Solvent permutational invariance

v" Dense system

.“h

III mer Distance
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Conclusion - Broader significance

Boltzmann generators are a promising application of machine learning
in molecular modeling

* Rare event-sampling in many-body systems is an active field of research:
v" Boltzmann generators provides a one-shot sampling of metastable states
v" Reaction coordinate free sampling method
v' Highly scalable ML algorithm
v' Lower computational cost than traditional enhanced sampling methods
e Application to biomolecular systems
v' Noé ¢t al. applied Boltzmann generators to protein system

v' Many similarly framed problems in biomolecular simulations
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Conclusion - Continued work

Much of the results shared today were preliminary results and requires
further work

* We are unable to reproduce KL loss results from the paper

H(x)
. Contour plot of the double-well potential

Bivarate normal distribution

(configuration space, x ~ pix)) (latent space, z = Fiz(x))

KL

0000
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Conclusion - Continued work

Much of the results shared today were preliminary results and requires
further work |

Frequency

* We are unable to reproduce KL loss results from the paper
-10 -3 0
Energy / kT

* Implement the reaction coordinate loss term (Jgc) -
1 KL+ML ’@

* Latent space interpolation C1 KL+RC

>
o
c
3]
- |
o
@
-
u

* Apply Boltzmann generators to the dimer in L] bath system
* Tidy up Jupyter-notebooks and github repository

Frequency

-10 -5
Energy / kKT

Frequency
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Conclusion - Future work

Future work

* Applying Boltzmann generators in our research:
v' Provides insight into the binding affinity of the .
complex.

v" Determines a binding ensemble.

N

Enables the examination of alternate binding
conformations not predicted experimentally

v" Provides insight into the multimodal specificity
and the binding mechanism of a binding

complex.
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Conclusion - Future work

Future work

* Applying Boltzmann generators in our research:

v' Peptide folding transitions

Metropolis-Minimization

Temperature
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Conclusion
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Any questions?
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